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1. Introduction

Wilson loops are some of the most interesting observables in non-abelian gauge theories. In

addition to their paramount role as the order parameter for confinement, they constitute

a large class of non-local gauge invariant observables. In the AdS/CFT [1] correspondence

they are realized in a very suggestive way: the expectation value of the Wilson loop is given

by the string partition function with appropriate boundary conditions. The superstring in

AdS5 × S5 bound by the loop represents the Wilson loop in the same way the QCD string

should give the area-law of a confining gauge theory.

In practical applications one uses AdS5 × S5 to evaluate the Wilson loop at large N

and ’t Hooft coupling λ = g2
Y MN . On the string theory side this translates to weak string

coupling gs = λ/(4πN) and large string tension (or large AdS5 and S5 radii L), since

λ = L4/α′2. In this limit the string calculation reduces to finding the minimal surface with

appropriate boundary conditions and evaluating its action.

Despite their importance, the study of Wilson loops in the AdS/CFT correspondence

hasn’t benefited from the same impetus as that of local gauge theory operators. In partic-

ular, the exciting discovery of integrable structures on both sides of the duality has been

so far applied only to local operators. One of the main purposes of the present work is to

extend the tools of integrability also to operators that are non-local on the gauge theory.

In order to place this work in perspective, it is useful to remind ourselves of the status

of classical integrability in AdS/CFT, mostly on the string theory side of the duality (for

reviews on the impressive body of work on integrability on the gauge theory side, see

e.g. [2]). Integrability of two-dimensional non-linear sigma models has been known for

many years [3]. The world-sheet description of string theory on AdS5 × S5 is given by two

non-linear sigma models, related by the Virasoro constraints [4]. In [5] it was observed that

the presence of Virasoro constraints doesn’t affect the construction of currents, so the full

bosonic sector of the world-sheet description is integrable. It was later shown in [6] that

classical integrability extends to the fermionic sector.

These non-linear sigma models can be simplified by considering particular ansatze.

A prime example are the spinning string solutions [7, 8]. In the world-sheet this ansatz

reduces the full non-lineal σ-model to a much simpler 1d integrable system [9, 10].

The simple but far-reaching observation, which is the starting point of this work, is that

locally supersymmetric Wilson loops are calculated within the AdS/CFT correspondence

using the same integrable classical σ-model. While for the local operators the classical

description in terms of string solutions is valid only at large quantum numbers, the Wilson

loops we consider may always be studied by semiclassical methods. Thus the integrability

of the σ-model should be utilized to evaluate those non-local observables.

In this paper we perform some concrete calculations of Wilson loop observables by

considering periodic ansatze similar to those of the rotating strings [9, 10]. The resulting

surfaces will evaluate Wilson loops whose contours are symmetric, like straight lines and

circles, and with periodic couplings to the scalar fields. Those will include as particular

cases many of the Wilson loops evaluated previously within the AdS/CFT framework.
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Note that we will study the Wilson loops only on the string side of the duality. For

the local operators, an integrable structure was also found in the gauge theory at weak

coupling in terms of the Bethe ansatz solution of spin-chains [11]. In certain cases the

correspondence with spinning strings allows to calculate conformal dimensions reliably

on both sides and compare the results, which exhibit remarkable agreement. But the

statement about integrability of the σ-model does not require this agreement between

strong and weak coupling. In fact, in the examples we study, we generally did not find a

simple agreement between the gauge theory calculation and the one in AdS5 × S5, so we

are focusing exclusively on the latter.

One of the most salient aspects of the present work is that the geometric data that

define the Wilson loop operator (e.g. distance between parallel lines, ratio of radii), is not

all encoded in a straight-forward manner in terms of the parameters and the integrals of

motion of the 1d integrable model. In the general case we will see that they are related by

equations that can’t be easily inverted, and require numerical analysis. More than that,

there is not even a one to one correspondence and generically there are many classical

solutions to the σ-model for the same boundary conditions.

As stated above, in this paper we will focus on the string theory side of the duality,

and already there we will find some very confusing phenomena. We will comment on some

of the difficulties in the comparison to the weakly coupled gauge theory in the final section.

It is worth mentioning the one case where there is good agreement between the gauge

theory and string results, which is the circular Wilson loop (with simplest coupling to the

scalars) [12, 13]. In that case summing up the perturbative series (assuming no interac-

tions) leads exactly to the string result including all non-planar corrections [14 – 16]. The

agreement seems to hold for both the expectation value of the Wilson loop, as well as the

correlation function of the Wilson loop with some local operators [17, 18].

The paper is organized as follows. In the rest of the introduction we present the

types of Wilson loops we will be studying. Then we will set up the σ-model calcula-

tion. In section 2 we look at the S5 part of the equations and solve them for periodic

motion. We write explicitly the solutions for motions in S1, S2 and S3 subspaces which

we utilize later. In the following section we do the same for the AdS5 part of the ac-

tion, solving it for general periodic motions and then concentrating on solutions within

AdS2 and AdS3 subspaces. Those include a line, circle, parallel lines and concentric cir-

cles.

In section 4 we put this all together into full solutions in AdS5 × S5. We start with

solutions in AdS2, which are just the straight line and the circle. This is the one case

where there is an explicit calculation relating the string results to the gauge theory, and

we review it there. We then discuss solutions within AdS3 × S1, which include two lines

or concentric circles that may be separated on the S5. The case of the lines was already

studied in the original papers [19, 20] and the circles (without the S1 dependence) were

studied before in [21, 22].

The next solutions we consider live in an AdS2 × S2 subspace of AdS5 × S5. They

correspond to a line or circle with periodic motion inside an S2, generalizing solutions

presented in [23, 24]. Finally we study the periodic motions inside an AdS3 ×S3 subspace

– 3 –
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(the simplest of those was discussed in [24]). Those are parallel lines and concentric circles

that also rotate on an S2, and they exhibit very rich phenomena. We find at least four

types of classical solutions and describe the phase transitions between them.

We end with a discussion on the results and some general speculations on the integra-

bility of Wilson loop operators.

1.1 The observables

The (locally) supersymmetric Wilson loops in N = 4 supersymmetric Yang-Mills include

a coupling to both the gauge field Aµ and the scalars Φi. The general observable is

W =
1

N
TrP exp

[

i

∫

(

Aµẋµ(t) + i|ẋ(t)|Θi(t)Φi

)

dt

]

. (1.1)

Here xµ describes the curve in space and Θi are unit vectors in R
6. More general operators

will include also couplings to the fermionic fields, but we will study the bosonic operators

only.

The fact that the magnitude of the coupling to the scalar is equal to the coupling to the

gauge field is crucial to guarantee the existence of a classical solution to the equations of

motion. It is actually not know how to evaluate Wilson loops not obeying this constraint.

Another point to note is the extra factor of i in front of the scalar term. This shows up

upon Wick rotation to the Euclidean theory (which we study here), and is also natural for

spatial loops in the lorentzian case.

We will be interested in loops following circular or straight paths in space. First we

shall look at the infinite line

x1 = t , (1.2)

and then at the circle

x1 = R cos kt , x2 = R sin kt . (1.3)

In both cases we will label the length of the line by T , so 0 < t < T . In the first case

T will be a cutoff on the diverging length, and in the second case T = 2π. Then the

integer k describes the number of times the loop wraps the circle. We will also consider

the correlator of two of those operators.

While we will not study those cases in detail, we will also solve the equations of motion

(implicitly) for loop with rotation in two planes

x1 = R1 cos k1t , x2 = R1 sin k1t ,

x3 = R2 sin k2t , x4 = R2 sin k2t , (1.4)

with k1 6= k2 two integers. There is also the helical Wilson loop, where one of the circles is

replaced with a straight line (R2 taken to be infinite)

x1 = R cos k1t , x2 = R sin k1t , x3 = t , (1.5)

– 4 –
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Our general ansatz will address the possibility of turning on as many as all six of the

scalar fields in the following way

Θ1(t) + iΘ2(t) = sin θ ei(m1t+ϕ1) ,

Θ3(t) + iΘ4(t) = cos θ sinψ ei(m2t+ϕ2) ,

Θ5(t) + iΘ6(t) = cos θ cos ψ ei(m3t+ϕ3) . (1.6)

In the example we study in detail we will turn on at most three scalars, i.e. the above

ansatz with m2 = m3 = cos ψ = ϕ2 = 0

If θ = π/2 and m1 = 0 there is only a coupling to Θ1, which is the case considered

most often. But some more complicated couplings to the sphere were considered in the

past, for example, θ = π/2 and m1 = k is the supersymmetric loop studied in [23].

The map from the gauge theory to AdS5 ×S5 is the following: the Wilson loop will be

described by a minimal surface that will follow the contour xµ on the boundary, and the

derivative normal to the boundary of the surface of the radial coordinate y and angular

coordinates, combined together into a six-vector, is proportional to Θi, so

∂σ(yi) ∝ Θi . (1.7)

In all the cases we study the surfaces are smooth, which implies that Θi(t) will be equal to

the boundary values of the S5 coordinates.

1.2 The σ-model

The bosonic part of the action of a string in AdS5 × S5 is a standard σ-model

1

4πα′

∫

dτ dσ
√

g gαβ∂αXM∂βXNGMN . (1.8)

Here GMN is the target space metric for AdS5 × S5 each with curvature radius L. By the

AdS/CFT correspondence it is related to the ’t Hooft coupling λ = g2
Y MN of the dual

gauge theory and the string scale by L4 = λα′2.

The ansatz we consider factorizes into an AdS5 part and an S5 part, yielding indepen-

dent equations of motion for the respective variables. These two parts of the ansatz are

related only in two ways. One is the range of the world-sheet coordinates, which clearly has

to agree, and the other are the Virasoro constraints. Therefore, it makes sense to consider

separately the S5 and AdS5 parts of the ansatz.

The Virasoro constraints are the vanishing of the stress-energy tensor which in the

conformal gauge is given by

Tσσ = −Tττ =
1

8πα′

[

∂σXM∂σXN − ∂τXM∂τXN
]

GMN = 0 , (1.9)

Tστ = Tτσ =
1

4πα′
∂σXM∂τX

NGMN = 0 . (1.10)

Since our space has a product structure we can decompose the stress-energy tensor

into independent contributions from AdS5 and from S5

Tαβ = TAdS5

αβ + T S5

αβ . (1.11)
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The Virasoro constraints are then

TAdS5

αβ + T S5

αβ = 0 . (1.12)

For notational simplicity we label a2 ≡ 8πα′T S5

σσ /L2, and in AdS5 this parameter serves a

role similar to a mass term coming from the Kaluza-Klein reduction on the sphere.

Since the stress-energy tensors of both σ-models are separately conserved, we have

∂σT S5

σσ + ∂τT S5

τσ = 0 (1.13)

and a similar equation for AdS5. In the ansatze we will use below, T S5

στ is always constant

(actually zero for the examples we consider in more detail), so it follows that a2 is constant.

Note that a2 may be either positive or negative.

2. The S5 ansatz

We start by studying the σ-model on S5. The standard metric on the sphere is

ds2
S5 = L2

(

dθ2 + sin2 θdϕ2
1 + cos2 θ

(

dψ2 + sin2 ψdϕ2
2 + cos2 ψdϕ2

3

))

. (2.1)

Following [9, 25], we use embedding coordinates in flat R
6 by defining three radial coordi-

nates

ρ1 = sin θ , ρ2 = cos θ sinψ , ρ3 = cos θ cos ψ , (2.2)

which clearly satisfy
∑

ρ2
i = 1, which we impose through the inclusion of a Lagrange

multiplier Λ. The S5 part of the action is

SS5 =
L2

4πα′

∫

dσ dτ

[

3
∑

i=1

(

ρ′2i + ρ̇2
i + ρ2

i (ϕ
′2
i + ϕ̇2

i )
)

+ Λ

(

3
∑

i=1

ρ2
i − 1

)]

. (2.3)

We are interested in the ansatz1

ρi = ρi(σ) , ϕi = miτ + βi(σ) , (2.4)

where mi are arbitrary constants (which have to be integers for a compact world-sheet).

One can check that this ansatz solves the equations of motion and it leads to the action

SS5 =
L2

4πα′

∫

dσ dτ

[

3
∑

i=1

(

ρ′2i + ρ2
i (β

′2
i + m2

i )
)

+ Λ

(

3
∑

i=1

ρ2
i − 1

)]

. (2.5)

The τ integration just gives an overall factor of the length of the Wilson line, T , thus we

are left with a one-dimensional problem, the Neumann-Rosochatius system, a particular

case of the n = 6 Neumann system. Clearly βi are cyclic, with conserved momenta πi, so

β′
i =

πi

ρ2
i

. (2.6)

1Compared to the spinning string ansatz the coordinates σ and τ are reversed, since we consider the

direction along the curve at the boundary to be the (Euclidean) time direction.
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The other equations of motion are

ρ′′i =
π2

i

ρ3
i

+ ρi(m
2
i + Λ) , (2.7)

The Neumann-Rosochatius system is integrable, and it’s easy to check that the follow-

ing three quantities

Ii = ρ2
i −

∑

j 6=i

1

m2
i − m2

j

(

(ρiρ
′
j − ρjρ

′
i)

2 +
π2

i

ρ2
i

ρ2
j +

π2
j

ρ2
j

ρ2
i

)

, (2.8)

with i = 1, 2, 3 are constants of motion. They are not independent, but satisfy I1+I2+I3 =

1. Another identity relates them to the S5 contribution to the stress-energy tensor

8πα′

L2
T S5

σσ = a2 =
3

∑

i=1

(

π2
i − m2

i Ii

)

=
3

∑

i=1

(

ρ′2i +
π2

i

ρ2
i

− ρ2
i m

2
i

)

. (2.9)

The off-diagonal contribution to the stress-energy tensor, Tστ = (L2/4πα′)
∑

miπi is

also a constant.

When evaluating the classical action of our solutions we may use this conserved quan-

tity to replace the potential terms with the kinetic terms

SS5 =

√
λ

4π

∫

dσ dτ

[

2

3
∑

i=1

m2
i ρ

2
i + a2

]

= 2Skinetic
S5 +

√
λ

4π
a2δσT . (2.10)

T is the range of the coordinate τ , or the length of the Wilson loop, and δσ is the range of

the σ coordinate. So the second term on the right hand side is proportional to the volume

of the world-sheet. Due to the Virasoro constraint, it will be canceled by a similar term

from the AdS5 part of the σ-model, the total classical action will be just twice the sum of

the kinetic terms on both sides.

Finally, it is worth noticing that since the integrand in (2.5) is positive, the S5 contri-

bution to the full action is positive, and the same is true for the kinetic term alone.

2.1 S1 ansatz

We look now at specific examples, starting with an ansatz that turns on only a single angle

ϕ1.

In order for the other angles to be constants we have to take ρ1 = 1, or θ = π/2 and

consequently ρ2 = ρ3 = 0. To turn on this angle in the framework of our general ansatz

we should take only π1 6= 0 while π2 = π3 = 0. We also set all three mi = 0.

There is another possibility, where we turn on m1 instead of π1. This imposes boundary

conditions within this S1 equator of S5, but as we will see in the next subsection, the

resulting minimal surface will generally not stay at ρ1 = 1. The solution will break the

symmetry and extend into some other direction, so we treat that case there.

The only equation of motion is ϕ′
1 = π1, and is solved by ϕ1 = ϕ1i + π1σ. The

contribution to the stress-energy tensor is proportional to a2 = π2
1, which will feed into the

Virasoro constraint equation. The integration constants Ii are not well defined.

– 7 –



J
H
E
P
0
1
(
2
0
0
6
)
0
5
6

This ansatz will be used below when looking at the correlator of two Wilson loops

separated in the ϕ1 direction as was originally studied in [20]. The boundary conditions

specifying ϕ1 along each loop, ϕ1i and ϕ1f , will fix π1. The difference in the value of this

angle between the two loops is related to the range of the world-sheet variable σ by

δϕ1 = ±aδσ . (2.11)

See section 4.2 below.

The classical action for this solution has no kinetic term, so when combining this

ansatz with the AdS5 part the full action will be given by twice the kinetic term in the

AdS5 action.

2.2 S2 ansatz

Let us look now at the case when we turn on two of the angles, θ and ϕ1, by including

a single rotation, m1 = m. Then ρ1 = sin θ, ρ2 = cos θ, ρ3 = 0. If we take πi = 0, the

conserved energy (2.9) reads

ρ′21 + ρ′22 − m2ρ2
1 = θ′2 − m2 sin2 θ = a2 . (2.12)

In some cases, like when considering the expectation value of a single Wilson loop the

constant is a2 = 0, but in other cases, involving the correlator of two loops, a2 may be

positive or negative. For positive a2 the angle θ will be a monotonous function of σ. For

negative a2, there will be an extremum for θ at some value θm, where a2 = −m2 sin2 θm.

In the special case when a = 0 the solution is very simple

sin θ =
1

cosh m(±σ + σi)
. (2.13)

We take the world-sheet coordinate to start at σ = 0, where the boundary value of θ fixes

σi by sin θi = 1/ cosh mσi. If σ extends to infinity, as will be the case for the single loop,

the variable θ will reach the north or south pole of the sphere, depending on the sign choice.

The action in this case is twice the kinetic term

SS5 = 2Skinetic
S5 =

L2

4πα′

∫

dτ dσ 2m2 sin2 θ =
T
√

λ

2π

∫

dθ |θ′| =
T
√

λ

2π
m| cos θf − cos θi| .

(2.14)

Here we discussed two solutions covering the northern or southern hemisphere, but

it is also possible to cover the sphere more times. Those extra wrappings are unstable

world-sheet instantons, wrapping the sphere at a fixed point inside AdS5. They can occur

anywhere on the world-sheet, but in our symmetric ansatz they can be only at symmetric

points. Clearly those will never give the dominant contribution to the action.

For a2 > 0 it is still easy to integrate (2.12) in terms of elliptic integrals of the first

kind with argument θ and modulus im/a

σ + σi = ±1

a
F

(

θ

∣

∣

∣

∣

i
m

a

)

. (2.15)
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As we will see in section 3, when a 6= 0 the surface describes the correlator of two Wilson

loops. Let us take θi and θf to be the boundary values of θ on the two loops. If the surface

starts at σ = 0 on the first loop, σi is fixed by (2.15) with θ = θi. The range of the σ

variable is given by

δσ =
1

a

∣

∣

∣

∣

F

(

θf

∣

∣

∣

∣

i
m

a

)

− F

(

θi

∣

∣

∣

∣

i
m

a

)∣

∣

∣

∣

. (2.16)

This will have to agree with the AdS5 part of the ansatz.

We can also write the action in terms of elliptic integrals of the first and second kind.

The kinetic part is

2Skinetic
S5 =

√
λ

4π

∫

dτ dσ 2m2 sin2 θ =
T
√

λ

2π

∫

dθ
m2 sin2 θ

|θ′|

= ±T
√

λ

2π
a

[

E

(

θ

∣

∣

∣

∣

i
m

a

)

− F

(

θ

∣

∣

∣

∣

i
m

a

)]θf

θi

. (2.17)

The above solutions are technically also valid for a2 < 0, but there are other expressions

for the above elliptic integrals that are more suitable for this case

σ + σi = ±1

b
F

(

arccos
cos θ

cos θm

∣

∣

∣

∣

i cot θm

)

, (2.18)

where we used b2 = −a2, and sin θm = b/m.

This solution has a turning points at θ = θm and θ = π − θm where σ + σi will be

equal to some integral multiple of the complete elliptic integral. This turning point may,

or may not, be on the world-sheet.2 To describe the solution with the turning point we

consider the two branches with positive and negative signs in (2.18). This will have the

turning point at σ + σi = 0. If we take the solution with only one branch, it will not have

a turning point along the world-sheet. In either case the value of σi is fixed by plugging in

the boundary value θi.

The full range of σ is now given by

δσ =
1

b

∣

∣

∣

∣

F

(

arccos
cos θf

cos θm

∣

∣

∣

∣

i cot θm

)

± F

(

arccos
cos θi

cos θm

∣

∣

∣

∣

i cot θm

)∣

∣

∣

∣

. (2.19)

In the case with a turning point we have to take the positive sign, to add the contribution

from both branches. The negative sign is taken when there is no turning point along the

world-sheet.

Finally, the kinetic part of the action is

2Skinetic
S5 =

T
√

λ

2π
b

[

E

(

arccos
cos θf

cos θm

∣

∣

∣

∣

i cot θm

)

± E

(

arccos
cos θi

cos θm

∣

∣

∣

∣

i cot θm

)]

, (2.20)

and the sign is chosen as in (2.19)

2There are also solutions with more than one turning point, which combine more than two branches of

the solution, but their action will be larger than the others.
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A special case of the above solution occurs when θi = θf = π/2 (and a2 < 0). Then the

expression for the range of σ (2.19) involves complete elliptic integrals. While one would

expect θm < π/2, the equations of motion are also solved by a constant θ = π/2.

This constant solution is unstable, but as we will see in section 4.4, this case is realized

when combined with the AdS5 part. The maximal values of the complete elliptic integrals

is for vanishing modulus, where K(0) = π/2, so the above ansatz allows only δσ < π/m.

For a longer world-sheet we need to take the constant solution, which puts no restriction

on δσ. The kinetic part of the action in this case is

Skinetic
S5 =

T
√

λ

2π
m2δσ . (2.21)

2.3 S3 ansatz

We may also consider the case with π2 6= 0 with very small modification. In addition to

the two angles that were already turned on, θ and ϕ1, this ansatz will include ϕ2, but we

still assume that ρ3 = 0, or ψ = π/2. The metric for the three coordinates is

ds2 = dθ2 + sin2 θdϕ2
1 + cos2 θdϕ2

2 . (2.22)

So we are studying periodic motion on S3.

In terms of ρ1 = sin θ =
√

1 − ρ2
2, the first integral (2.9) reads

ρ′21 = a2 − π2
2 + (m2

1 − a2)ρ2
1 − m2

1ρ
4
1 . (2.23)

This equation will have real solutions for both positive and negative a2, but there are some

constraints. First we require |a2+m2
1| ≥ 2|m1π2| and in addition, if a2 < π2

2, then m2
1 ≥ a2.

Again this may be integrated in terms of elliptic integrals. For a2 > π2
2 we write

σ + σi = ± ρ+
√

a2 − π2
2

F

(

arcsin
ρ1

ρ+

∣

∣

∣

∣

ρ+

ρ−

)

, (2.24)

where ρ2
± are the two roots of the polynomial on the right-hand side of (2.23)

ρ2
± =

m2
1 − a2 ±

√

(a2 + m2
1)

2 − 4m2
1π

2
2

2m2
1

. (2.25)

The expression for the angle ϕ2 is gotten from integrating ϕ′
2 = π2/(1 − ρ2

1) and is

given by an elliptic integral of the third kind

ϕ2 = ϕ2i ±
ρ+π2

√

a2 − π2
2

Π

(

ρ2
+, arcsin

ρ1

ρ+

∣

∣

∣

∣

ρ+

ρ−

)

. (2.26)

The kinetic part of the action is

Skinetic
S5 =

T
√

λ

2π

√

a2 − π2
2

ρ+

[

E

(

arcsin
ρ1

ρ+

∣

∣

∣

∣

ρ+

ρ−

)

− F

(

arcsin
ρ1

ρ+

∣

∣

∣

∣

ρ+

ρ−

)]

. (2.27)

There are other expressions that will be better suited for a2 < π2
2.
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2.4 More complicated cases

We have studied so far cases with motion only inside an S3 subspace of S5, and turned on

only one of the rotation parameters m1, while keeping m2 = m3 = 0.

To study the more complicated cases it may be useful to turn to the description of

the sphere [26, 9] in terms of the elliptic coordinates ζ1 and ζ2 that solve the equation
∑ ρ2

i

ζ−m2
i

= 0. Assuming m2
1 ≤ m2

2 ≤ m2
3, then the choice

m2
1 ≤ ζ1 ≤ m2

2 ≤ ζ2 ≤ m2
3 . (2.28)

will cover the range full range ρi ≥ 0. We can go back to our previous coordinates by

ρ1 =

√

(ζ1 − m2
1)(ζ2 − m2

1)

(m2
1 − m2

2)(m
2
1 − m2

2)
, ρ2 =

√

(ζ1 − m2
2)(ζ2 − m2

2)

(m2
2 − m2

1)(m
2
2 − m2

3)
,

ρ3 =

√

(ζ1 − m2
3)(ζ2 − m2

3)

(m2
3 − m2

1)(m
2
3 − m2

2)
. (2.29)

In terms of those coordinates the first integrals are related to hyperelliptic curves,

and can be solved in term of the appropriate integrals. Here we will not study the more

complicated cases in any detail, as shall become clear in section 4, the above examples are

already quite rich. We wish to make only some general comments about those cases.

As noted above, even if the boundary conditions fit within an S1 equator of S5, pre-

serving an SO(4) × U(1) subgroup of SO(6), the minimal surface will generically move off

the equator into an S2, breaking the symmetry down to SO(3) × U(1). If we turn on two

rotations m1 and m2 the boundary conditions will be inside an S3, but the classical solution

will generally extend over an S4, breaking the symmetry from U(1)3 to U(1)2 × Z2.

Such solutions can be written down, but it is not clear that they will be minima of the

action. The ansatz assumed rotational symmetry, but if the solution spontaneously breaks

some of the symmetry, it may break the rotational symmetry as well.

While we do not expect this to happen in the cases we discussed above, it becomes

totally clear that this will have to happen if we turn on all three of the rotation parameters

mi. Consider the expectation value of a single Wilson loop, in order to get a finite action

each of the circles with angles ϕi will have to shrink to zero radius, i.e. somewhere along

the world-sheet each of the ρi will vanish.

The rotationally symmetric ansatz would require this to happen on the same point on

the world-sheet, which is impossible since
∑

ρ2
i = 1. So to get a finite action the different

ρi have to vanish at different positions, and the rotational symmetry will be broken. With

two rotations it’s possible to have two of the ρ’s vanish simultaneously, but it is not clear

that this will indeed be a minimum of the action. So some extra caution is required in

addressing that case.

3. The AdS5 ansatz

We will now turn to the AdS5 part of the σ-model. Again we consider periodic motions

for the string, starting with a general ansatz and then specializing to several simpler cases.

– 11 –
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The main relation between the AdS5 and the S5 parts of the ansatz comes through

the Virasoro constraints. Since we already have the S5 contribution to the world-sheet

stress-energy tensor, the Virasoro constraints just read

TAdS5

σσ +
L2

8πα′
a2 = 0 ,

TAdS5

στ +
L2

4πα′

∑

i

πimi = 0 . (3.1)

As in the case of the sphere, a simple description of the system is by taking euclidean

AdS5 as a hypersurface in flat six-dimensional Minkowski space. It is given by the hyper-

boloid

−Y 2
0 + Y 2

1 + Y 2
2 + Y 2

3 + Y 2
4 + Y 2

5 = −L2 . (3.2)

Now let us define the coordinates r0, r1, r2, v, φ1 and φ2 by

Y0 = Lr0 cosh v , Y5 = Lr0 sinh v ,

Y1 = Lr1 cos φ1 , Y2 = Lr1 sin φ1 ,

Y3 = Lr2 cos φ2 , Y4 = Lr2 sin φ2 . (3.3)

Those coordinates satisfy the constraint −r2
0+r2

1+r2
2 = −1, and the metric of the embedding

flat Minkowski space is

ds2 = L2
(

−dr2
0 + r2

0dv2 + dr2
1 + r2

1dφ2
1 + dr2

2 + r2
2dφ2

2

)

. (3.4)

In some of the specific examples we study below we will employ Poincaré coordinates.

We replace r0, r1, r2 and v with ŷ, r̂1 and r̂2 by the relations

r0 =

√

ŷ2 + r̂2
1 + r̂2

2

ŷ
, r1 =

r̂1

ŷ
, r2 =

r̂2

ŷ
, v = ln

√

ŷ2 + r̂2
1 + r̂2

2 . (3.5)

In the new coordinates the metric reads

ds2 =
L2

ŷ2

(

dŷ2 + dr̂2
1 + r̂2

1dφ2
1 + dr̂2

2 + r̂2
2dφ2

2

)

. (3.6)

Going back to the embedding coordinates, we consider the following ansatz, which is

consistent with the equations of motion

ri = ri(σ) , v = v(σ) , φ1 = k1τ + α1(σ) , φ2 = k2τ + α2(σ) , (3.7)

where k1 and k2 are arbitrary integers (in this case, when the world-sheet is compact, also

the parameters mi of the S5 ansatz have to be integers). One could consider also some τ

dependence for v, but we will not include that. The action now is

SAdS5
=

L2

4πα′

∫

dσ dτ [−r′20 + r′21 + r′22 + r2
0v

′2 + r2
1α

′2
1 + r2

2α
′2
2 + r2

1k
2
1 + r2

2k
2
2 +

+ Λ
(

−r2
0 + r2

1 + r2
2 + 1

)

] . (3.8)
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v, α1 and α2 are cyclic, so we can express them in terms of the conserved momenta

v′ =
p0

r2
0

, α′
1 =

p1

r2
1

, α′
2 =

p2

r2
2

. (3.9)

The equations of motion for r0, r1 and r2 are

r′′0 = Λr0 −
p2
0

r3
0

,

r′′1 = (k2
1 + Λ)r1 +

p2
1

r3
1

,

r′′2 = (k2
2 + Λ)r2 +

p2
2

r3
2

, (3.10)

It is simple to find the first integral of motion, it’s the diagonal component of the AdS5

contribution to the stress-energy tensor, which one can get by multiplying each of the above

equations by the appropriate r′i, summing them and using that (−r2
0 + r2

1 + r2
2)

′ = 0. The

result is

−r′20 + r′21 + r′22 +
p2
0

r2
0

+
p2
1

r2
1

+
p2
2

r2
2

− r2
1k

2
1 − r2

2k
2
2 + a2 = 0 . (3.11)

The integration constant a2 has to be the same as on the S5 part of the action, so together

the Virasoro constraint is satisfied. Using this we can again replace the potential terms by

the kinetic ones to find for the classical action

SAdS5
=

√
λ

4π

∫

dσ dτ
[

2(r2
1k

2
1 + r2

2k
2
2) − a2

]

= 2Skinetic
AdS5

−
√

λ

4π
a2δσT . (3.12)

When combining this with the contribution of the sphere (2.10) the a2 terms will cancel

each other, leaving us with twice the sum of the kinetic actions. This action will be

divergent, due to a missing boundary term [13]. After removing the divergence one finds a

finite action that is negative (or zero). This is in contrast to the S5 case, where the action

was positive.

The other integrals of motion are

I0 = r2
0 −

2
∑

i=1

1

k2
i

(

(r0r
′
i − rir

′
0)

2 +
p2

i

r2
i

r2
0 −

p2
0

r2
0

r2
i

)

,

I1 = r2
1 −

1

k2
1

(

(r0r
′
1 − r1r

′
0)

2 +
p2
1

r2
1

r2
0 −

p2
0

r2
0

r2
1

)

+

+
1

k2
1 − k2

2

(

(r1r
′
2 − r2r

′
1)

2 +
p2
2

r2
2

r2
1 +

p2
1

r2
1

r2
2

)

. (3.13)

We can define I2 in a similar fashion, but it is not an independent integral, −I0 + I1 + I2 =

−1. They are also related to the diagonal component of the stress-energy tensor by

k2
1I1 + k2

2I2 − p2
0 + p2

1 + p2
2 = a2 . (3.14)

For completeness let us write the off-diagonal component of the stress-energy tensor

Tστ =
L2

4πα′
(k1p1 + k2p2) , (3.15)

which is also a constant.
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So like in the case of the sphere, this periodic ansatz reduces the σ-model to an inte-

grable system similar to the Neumann-Rosochatius system. For any value of the integration

constants one can find the appropriate solution, though describing it may be complicated.

As before, it is possible to introduce the elliptical coordinates and write the solutions in

terms of hyperelliptic integrals.

We will not study the general solution, but instead focus below on some simple cases

of planar concentric circles and parallel lines.

3.1 AdS3 ansatz: circles

The first example we look at is that of a surface that ends along two concentric circles

at the boundary of AdS5. In our coordinate system the boundary of AdS5, which is a

four-sphere, is given by r0 → ∞. If we switch to the Poincaré patch the boundary will be

flat R
4. In the latter case (3.6) we describe a circle on the boundary by a constant r̂1 and

r̂2 = 0. In the former we take r2 = 0 and the radius of the circle will be given by the value

of v.

So to study concentric circles we will use our general ansatz with r2 = φ2 = 0. We

can then eliminate r0 from the equations by the identity r2
0 = 1 + r2

1 and the Virasoro

constraint turns into an equation for r1

r′21 = −a2 − p2
0 − p2

1 + (k2
1 − a2)r2

1 + k2
1r

4
1 − p2

1

r2
1

. (3.16)

It turns out to be useful to write the equation in terms of z = 1/r1, which goes to zero at

the boundary. The above equation becomes

z′2 = k2 + (k2 − a2)z2 − (a2 + p2
0 + p2

1)z
4 − p2

1z
6 . (3.17)

This can be solved in terms of elliptic integrals. In what follows we concentrate on p1 =

0 and label p0 = p. Generically the surfaces will reach the boundary twice, and will

correspond to the correlator of two Wilson loops.

For a2 + p2 > 0 the equation has a turning point, a maximal value of z before the

surface goes back to the boundary. For a2 +p2 < 0 (note that a2 could be negative) we will

have to analytically continue beyond z = ∞ to get the second part of the string. The case

of a2 + p2 = 0 is very interesting, and as we will see it generally describes the correlator

of the Wilson loop with a local operator. A special case we will concentrate on later is for

p = 0, where v is constant along the world-sheet. This will describe the correlator of two

coincident loops, or in the case of a2 = 0, the one-point function of a Wilson loop. We

illustrate some of those solutions in figure 1.

We start with the case of a2 + p2 > 0, where the solution can be written in terms

of elliptic integrals with modulus z+/z− and argument arcsin z/z+ where z2
± are the two

roots of the polynomial on the right-hand side of (3.17)

z2
± =

k2 − a2 ±
√

(a2 + k2)2 + 4k2p2

2(a2 + p2)
, (3.18)
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Figure 1: The value of ŷ as a function of r̂1 for three solutions to the AdS3 ansatz. For two circles

with radii Ri = 0.6 and Rf = 1 and opposite orientation (solid line), the solution has a2 + p2 > 0.

If the circles have the same orientation, the surface has to cross r̂1 = 0 which is given by the

expressions with a2 + p2 < 0 (dotted line). For a2 + p2 = 0 (dashed line) the surface describes the

correlator of a circle and a local operator at r̂1 = 0.

as

σ =
z+

k
F

(

arcsin
z

z+

∣

∣

∣

∣

z+

z−

)

. (3.19)

Inverting this equation gives z, or r0 and r1 as a function of σ.

Clearly z has a turning point, or a maximum, at z+. Beyond there we have to continue

on the other branch of the inverse sine function, until reaching the boundary again. That

will give the full range of the world-sheet coordinate σ by the complete elliptic integrals

δσ =
2z+

k
K

(

z+

z−

)

. (3.20)

Next we can integrate v in terms of elliptic integrals of the first and third kind (vi is

the initial value, at z = 0)

v − vi = p

∫

dσ

r2
0

= p

∫

dz

z′
z2

1 + z2

=
pz+

k

[

F

(

arcsin
z

z+

∣

∣

∣

∣

z+

z−

)

− Π

(

−z2
+, arcsin

z

z+

∣

∣

∣

∣

z+

z−

)

]

. (3.21)

This expression again covers only half the world-sheet, the other branch is given by a

similar expression shifted by the complete elliptic integrals

v − vi =
pz+

k

[

2K

(

z+

z−

)

− 2Π

(

−z2
+

∣

∣

∣

∣

z+

z−

)

−

− F

(

arcsin
z

z+

∣

∣

∣

∣

z+

z−

)

+ Π

(

−z2
+, arcsin

z

z+

∣

∣

∣

∣

z+

z−

)]

. (3.22)

The surface started on the first branch at v = vi. On the second branch v reaches the final

value vf , so the total change is

δv = vf − vi =
2pz+

k

[

K

(

z+

z−

)

− Π

(

−z2
+

∣

∣

∣

∣

z+

z−

)

]

. (3.23)
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Recall that in the Poincaré patch (3.6) the boundary of AdS5 is at z = 0, and there

the radius r̂1 = exp v. When considering the correlator of two concentric circles the ratio

of their radii is then given by exp δv. We will use this when studying specific examples

below.

Finally we can evaluate the action. To perform the integral we have to take care to

include the two branches, and regularize the divergence near the boundary by the cutoff z0

2Skinetic
AdS5

=

√
λ

4π

∫

dτ dσ 2k2r2
1 =

T
√

λ

2π
k2

∫

dz

z2z′

= −T
√

λ

2π
2k

[

1

z

√

(1 − z2

z2
+

)

(

1 − z

z2
−

)

−

− 1

z+
F

(

arcsin
z

z+

∣

∣

∣

∣

z+

z−

)

+
1

z+
E

(

arcsin
z

z+

∣

∣

∣

∣

z+

z−

)]z+

z0

(3.24)

=
T
√

λ

2π
2k

[

1

z0
− 1

z+
E

(

z+

z−

)

+
1

z+
K

(

z+

z−

)

]

. (3.25)

The divergent term is proportional to the circumference of the circle, and is canceled by

a boundary term. Thus the kinetic part of the action will be given just by the complete

elliptic integrals. Note that in this case of the circles the range of the τ variable is T = 2π,

but we have chosen to leave the explicit dependence on T in the expressions.

Next, we will consider the a2 + p2 = 0 case (also studied in [18]), and argue that it

describes a two-point function of a Wilson loop and a local operator. We define b2 = −a2,

so we have b = ±p and the solution for z is simply

z =
k

√

k2 + p2
sinh

(

√

k2 + p2 σ
)

, (3.26)

and for v we get

v = pσ − arctanh

(

p
√

k2 + p2
tanh

√

k2 + p2 σ

)

. (3.27)

Both expressions diverge as σ → ∞. To understand the geometry it’s useful to switch to

the Poincaré patch (3.6) where

r̂1 =
ev

√
1 + z2

, ŷ =
zev

√
1 + z2

. (3.28)

If we choose the solution with negative p, we find that v → −∞, so the surface gets back

to the boundary at r̂1 = 0, so instead of calculating the correlator of two Wilson loops, this

describes the two-point function of a Wilson loop and a local operator at r̂1 = 0. The case

with positive p, or v → ∞ gives a similar surface, for a local operator inserted at infinite

r̂1.

The action in this case is

2Skinetic
AdS5

= −T
√

λ

2π

√

k2 + p2 coth
√

k2 + p2 σ

∣

∣

∣

∣

σmax

σmin

. (3.29)
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σmin and σmax are chosen such that ŷ = ŷ0, some cutoff. Near σ = 0 there is the usual

linear divergence which will cancel against a boundary term giving

2Skinetic
AdS5

= −T
√

λ

2π

√

k2 + p2 . (3.30)

There is another potential divergence at σ → ∞. The full AdS5 action (3.12) includes

a term proportional to the area of the world-sheet, which will diverge logarithmically with

ŷ0. In all the cases we study this term will cancel against an equal contribution from the

σ-model on the sphere. But it is possible that there are cases when those terms will not

cancel exactly, then this logarithmic divergence will capture the anomalous dimension of

the local operator.

For a2 + p2 < 0, equation (3.17) again doesn’t have a turning point, so the surface

reaches z = ∞. Beyond that point we should continue the solution to another branch, until

it comes back to the boundary. It again describes the correlator of two circles, but since

the surface crosses itself at infinite z (or r1 = 0), the orientation of the circles will be the

opposite of the previous examples. Now the two circles are oriented in the same direction,

so the surface that connects them has to cross itself to preserve this orientation.

In this case both z+ and z− defined in (3.18) are imaginary, therefore it is useful to

define b2 = −a2 and use

z̃2
± =

b2 + k2 ±
√

(b2 − k2)2 + 4k2p2

2(b2 − p2)
= −z2

± . (3.31)

Then the solution is conveniently written in terms of elliptic integrals with the complemen-

tary modulus
√

1 − z̃2
+/z̃2

− as

σ =
z̃+

k
F

(

arctan
z

z̃+

∣

∣

∣

∣

√

1 − z̃2
+

z̃2
−

)

. (3.32)

Indeed we see that z can extend to infinity, which corresponds to r1 = 0, beyond which

we have to analytically continue σ. The solution will reach the boundary z = 0 again at

arctan z/z̃+ = π, so the full range of σ is twice the complete elliptic integral

δσ =
2z̃+

k
K

(
√

1 − z̃2
+

z̃2
−

)

. (3.33)

Next we integrate v

v − vi =
pz̃3

+

k(z̃2
+ − 1)

[

F

(

arctan
z

z̃+

∣

∣

∣

∣

√

1 − z̃2
+

z̃2
−

)

−

− Π

(

1 − z̃2
+, arctan

z

z̃+

∣

∣

∣

∣

√

1 − z̃2
+

z̃2
−

)

]

. (3.34)

As before, this covers half the world-sheet, and the other branch is found in the same

manner. On the second branch v reaches the final value

δv = vf − vi =
2pz̃3

+

k(z̃2
+ − 1)

[

K

(
√

1 − z̃2
+

z̃2
−

)

− Π

(

1 − z̃2
+

∣

∣

∣

∣

√

1 − z̃2
+

z̃2
−

)]

. (3.35)
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Finally we evaluate the action, which after removing the standard divergence is

2Skinetic
AdS5

= −T
√

λ

2π

2k

z̃+
E

(
√

1 − z̃2
+

z̃2
−

)

. (3.36)

3.2 AdS2 ansatz: circles

Let us now consider the simpler case where v is a constant, or p = 0. At the boundary

of AdS5 the value of v is related to the radius of the circle by R = exp v (3.5), so this

corresponds to a single circle or two coincident circles on the boundary. This ansatz

involves only the coordinates z and φ1 (or r0, r1 and φ1), which parameterize an AdS2

subspace of AdS5, hence the name.

In the Poincaré coordinates (3.6) both ŷ and r̂1 will be non-zero, but they will satisfy

the constraint

ŷ2 + r̂2
1 = R2 , (3.37)

with R clearly the radius of the circle on the boundary.

For a2 > 0, the solution is the same as the more general case (3.19), with the replace-

ment (3.18) of z+ = a/k and z− = i

σ =
1

a
F

(

arcsin
az

k

∣

∣

∣

∣

i
k

a

)

. (3.38)

The coordinate z takes values between 0, the boundary of AdS5 and z+ = k/a, where it

folds back on itself, reaching again the boundary of AdS5. The solution therefore covers

twice a region of a Poincaré disk, delimited by the boundary and a finite radius. Between

the two points where the surface reaches the boundary, the world-sheet coordinate aσ will

extend from 0 to twice the complete elliptic integral. Thus the range of the world-sheet

coordinate σ is given by

δσ =
2

a
K

(

i
k

a

)

. (3.39)

We can evaluate the action, where after accounting for the two branches, and removing

the divergence we find

2Skinetic
AdS5

= −T
√

λ

2π
2a

[

E

(

i
k

a

)

− K

(

i
k

a

)]

. (3.40)

If a = 0 the solution is even simpler

z = sinh kσ . (3.41)

In the Poincaré coordinates (3.6) this translates to

ŷ = R tanh kσ , r̂1 =
R

cosh kσ
, (3.42)

where R = exp v is the radius of the circle on the boundary. The action in this case is

(after subtracting the divergence)

SAdS5
= −T

√
λ

2π
k . (3.43)
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This solution is different from the case a2 + p2 = 0 considered above. Here the surface

does not reach the boundary again as z → ∞, instead we reach ŷ = R, where the surface

can connect to itself. Thus this surface will describe a single Wilson loop. Since T = 2π,

the action is simply k times the result for the simplest circular observable [12, 13].

For a2 < 0, the z coordinate again extends to infinity, or r1 reaches zero. But now the

surface will not close smoothly on itself. Instead we have to continue it beyond that point,

until it reaches the boundary again. Defining b2 = −a2 we have the general case with the

replacement z̃+ = 1 and z̃− = k/b

σ =
1

k
F

(

arctan z

∣

∣

∣

∣

√

1 − b2

k2

)

. (3.44)

The range of σ is again twice the complete elliptic integral, which we write in two ways

utilizing the symmetry of exchanging the two roots z̃+ ↔ z̃−

δσ =
2

k
K

(
√

1 − b2

k2

)

=
2

b
K

(
√

1 − k2

b2

)

, (3.45)

and the action is

2Skinetic
AdS5

= −T
√

λ

2π
2k E

(
√

1 − b2

k2

)

. (3.46)

3.3 AdS3 ansatz: straight lines

We now wish to consider the case of infinite anti-parallel straight lines. This is a degener-

ate example of the planar circles, which corresponds to taking the double limit of nearly

coincident circles of very large radii. Yet, since the anti-parallel lines are very natural

observables, which capture the potential between external charged particles, we derive the

results in detail.

Consider two lines extended in the x1 direction separated in the x2 direction at the

boundary of the Poincaré patch. This naturally leads to the ansatz (in what follows we

omit the hats to avoid clutter),

x1 = τ , y = y(σ) , x2 = x2(σ) , (3.47)

which produces the following AdS5 action

SAdS5
=

L2

4πα′

∫

dσ dτ
1 + y′2 + x′2

2

y2
. (3.48)

The coordinate x2 is cyclic, with a conserved momentum p = x′
2/y

2.

The equation of motion for y

yy′′ − y′2 + 1

y3
+ p2y = 0 , (3.49)

is integrated once to yield
y′2 − 1

y2
+ p2y2 = −a2 . (3.50)
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Note that as before, the left hand side is proportional to the AdS5 contribution to the

diagonal part of the stress-energy tensor, therefore the constant on the right hand side has

to be equal to the integration constant on the sphere. And again we express the on-shell

action in terms of the kinetic term

SAdS5
=

√
λ

4π

∫

dσ dτ

(

2

y2
− a2

)

= 2Skinetic
AdS5

−
√

λ

4π

∫

dσ dτ a2 . (3.51)

Comparing the equation for y (3.50) to the equation for z above (3.17) we see that

this is a degenerate case when we replace

z → ky , p → p

k
, (3.52)

and take the limit of k → 0. So all the formulae below will follow from the previous ones

in this limit.

Unless p2 = 0 and a2 ≤ 0, y will have a turning point at

y2
+ =

−a2 +
√

a4 + 4p2

2p2
. (3.53)

The equation can be solved in terms of an elliptic integral of the first kind with modulus

ipy2
+ = y+/y−, where y− is the other root of (3.50)

σ = y+F

(

arcsin
y

y+

∣

∣

∣

∣

ipy2
+

)

, (3.54)

Varying y between zero and y+ corresponds to σ/y+ going from 0 to the complete elliptic

integral. Unless we study the single straight line, this range covers only half the world-sheet,

so we have to take care to multiply some quantities by two to fix that. Thus

δσ = 2y+K
(

ipy2
+

)

. (3.55)

x2 in turn can be written in terms of elliptic integrals of the first and second kind

x2 = p

∫

dσ y2 =
1

py+

[

E

(

arcsin
y

y+

∣

∣

∣

∣

ipy2
+

)

− F

(

arcsin
y+

y

∣

∣

∣

∣

ipy2
+

)]

. (3.56)

The distance between the lines is given by the complete integrals

R =
2

py+

[

E
(

ipy2
+

)

− K
(

ipy2
+

)]

. (3.57)

The constant a is determined from the solution of the S5 equation, leaving this expression

for R to fix the integration constant p. Scale invariance of the theory means that there is

a simple scaling law, p1/2R depends only on the ratio p/a2.

We can calculate the action, by the same integrals as in the case of the circle (3.40),

accounting for the two halves of the world-sheet and removing the divergence we find

2Skinetic
AdS5

= −T
√

λ

2π

2

y+

[

E
(

ipy2
+

)

− K
(

ipy2
+

)]

(3.58)

where T is the length of the lines
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3.4 AdS2 ansatz: straight lines

A simple case is when p = 0, which means the solution has no dependence on the x2

direction, or in other words R = 0 (or R → ∞). Like in the case of the circles, this is the

AdS2 degeneration of the AdS3 ansatz. This solution will describe two coincident lines or

a single line.

For a2 > 0 the solution is

y(σ) =
1

a
sin aσ , (3.59)

and the surface reaches the boundary twice, at σ = 0 and at σ = π/a. The kinetic part of

the action is

Skinetic
AdS5

=

√
λ

2π

∫

dσ dτ
1

y2
=

T
√

λ

2π

2

y0
. (3.60)

So after removing the divergence the action vanishes.

In the special case when a2 = 0 the solution is even simpler, y(σ) = σ, and it describes

a single straight line. The action again will vanish.

Finally, for a2 < 0 the solution is better written in terms of b2 = −a2 as

y(σ) =
1

b
sinh bσ . (3.61)

This solution extends to infinite y, but like in the case of the circle with negative a2, it

carries momentum at infinity, and perhaps should be connected to another solution there

describing the correlator of two lines with the same orientation. The range of σ now

diverges, but since we have not found corresponding solutions to the S5 ansatz, we cannot

realize this example.

3.5 More complicated cases

We have discussed certain solutions that fit within AdS2 and AdS3 subspaces of AdS5, or

Wilson loop operators that fit within a plane (or an S2) on the boundary. But our general

ansatz allows much more general solutions.

First, still within the AdS3 ansatz it is possible to consider the case where p1 6= 0. The

solution of equation (3.17) is still an elliptic integral. So the expressions will be similar

to the once above, only somewhat more involved. The real difference comes because now

the off-diagonal Virasoro constraint, which includes k1p1, will not be satisfied within AdS5

alone. To fix that we have to take m1π1 in the S5 ansatz non-zero too.

The effect of this is to include some extra phase shift along the world-sheet. If one

considers, say, the two circles, one boundary will be given by φ1i = k1τ , and the other by

φ1f = α1(δσ) + k1τ . The relative phase will be non-zero if p1 6= 0, and will be meaningful

only if there is some rotation (say m1) on S5. Therefore turning on p1 corresponds exactly

to that case with a relative phase between the lines. We will not study this case in detail.

This generalization is still within the AdS3 subspace, but our ansatz allows much more

general solutions, mainly turning on k2. That will correspond to a Wilson loop that wraps

two circles on orthogonal planes on the boundary. Again we can consider the one-point
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function of this operator, or the correlator of two. Another case is when we take the radius

of one of the circles to infinity, which will give a helix. A solution corresponding to the

correlator of two helices was already presented in [27].

We have not studied those cases in detail, and in particular have not checked whether

the periodic ansatz used here will always give the true minimum of the action. As mentioned

above, in the S5 case, there are reasons to believe that the symmetric solution will not

always give the minimum of the action, so one should take care in studying these examples.

4. Classification of solutions

After studying those general solutions on the sphere and in AdS5 we put them together

here, pointing out special features that arise in the different examples. A lot of the examples

were studied over the past years, we try to collect the known facts about those cases, and

discuss some new solutions.

4.1 AdS2 subspace

We start with a very familiar example, where the Wilson loop couples only to one of the

scalars, leading to a trivial S5 ansatz, and also the spatial part is the simplest, either a

single line, or a circle.

The straight line is given by (1.2) and (1.6) with θ = π/2 and m1 = 0. The solution

for the S5 part is trivial leading to a2 = 0, and in AdS5 the solution is simply

x1 = τ , y = σ , (4.1)

This Wilson loop preserves half of the supersymmetry of the theory, and its expectation

value is trivial 〈W 〉 = 1. The surface described by the above coordinates has a geometry

of AdS2.

A more interesting example is the circular Wilson loop (1.3), with arbitrary wrapping

k. The minimal surface is given by (3.41)

φ1 = kτ , z = sinh kσ (4.2)

or in the other coordinate system

φ1 = kτ , r̂1 =
R

cosh kσ
, ŷ = R tanh kσ . (4.3)

This surface again has the geometry of AdS2, but now the action (3.43) is given by S =

−k
√

λ, so the expectation value of the Wilson loop is

〈W 〉 = exp k
√

λ . (4.4)

This Wilson loop also preserves half the supersymmetries [28, 27], but all the super-

charges it preserves involve the superconformal generators, so they do not close on the

hamiltonian, and apparently do not force the expectation value to be trivial.
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In fact the straight line and the circle are related by a conformal transformation. The

difference between the two was attributed [15] to an anomaly that arises since the conformal

transformation takes the point at infinity where the line ends, to a finite distance.

Quite remarkably one can reproduce this result from a perturbative calculation as-

suming only ladder/rainbow diagrams contribute (in the Feynman gauge) [14]. The exact

result at finite N from this gauge theory calculation is captured by the hermitean matrix

model given by the following integral over all N × N hermitean matrices M

〈Wladders〉 =

〈

1

N
Tr exp M

〉

=
1

Z

∫

DM
1

N
Tr(exp kM) exp

(

−2N

λ
Tr M2

)

. (4.5)

The leading behavior at large N , expressed in terms of the modified Bessel function, is

easily found using Wigner’s semi-circle law

〈Wladders〉 ∼
∫ 1

−1
dx

√

1 − x2 exp
(

xk
√

λ
)

=
2

k
√

λ
I1

(

k
√

λ
)

∼ exp k
√

λ . (4.6)

This is indeed the leading behavior of the circular Wilson loop as calculated by the string

in AdS5.

One can do better and solve this matrix model exactly applying several different tech-

niques. Using orthogonal polynomials, the full result at finite N was given [15, 29] in terms

of a Laguerre polynomial Lk
n(x) = 1/n! exp[x]x−k(d/dx)n(exp[−x]xn+k) as

〈Wladders〉 =

〈

1

N
Tr exp M

〉

=
1

N
L1

N−1

(

−k2λ

4N

)

exp

(

k2λ

8N

)

, (4.7)

Several properties of this result, expanded at large N and λ were compared to the expected

behavior of semiclassical string in AdS5.

The most extensive test of this expression was carried out in [16] where all the non-

planar corrections at large N and large λ with fixed ration k2λ/N were evaluated. The

result

exp

[

−k
√

λ

2

√

1 +
k2λ

16N2
− 2Narcsinh

k
√

λ

4N

]

, (4.8)

was then compared to a calculation of the Wilson loop using a D3-brane instead of a funda-

mental string. The results were in complete agreement capturing all quantum corrections

beyond the leading planar result.

While this AdS2 sector includes non-trivial Wilson loops only along the circle, there is

an infinite family of Wilson loops one may consider. Here we discussed only the single trace

operator of the Wilson loop wrapped k times, but there are multi-trace Wilson loops. Some

were calculated in [15], and the resulting expressions are rather complicated. Alternatively,

one may consider Wilson loops in higher dimensional representations of the gauge group.

4.2 AdS3 × S1 subspace

The AdS2 example has many interesting features, but in terms of finding the minimal

surface solution, it’s extremely trivial. So we turn now to the AdS3 × S1 subspace. In

the previous example the Wilson loop was along a one-dimensional line or circle, and the
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resulting surface had the geometry of AdS2. In general if the Wilson loop is planar, the

resulting minimal surface will sit within an AdS3 subspace of AdS5, since the solution will

depend only on the two coordinates on the plane and the radial coordinate ŷ.

The same is true for operators that are defined along a curve inside any 2-sphere on

the boundary of AdS5. One can stereographically project any 2-sphere to a plane, and

unless a point along the Wilson loop is mapped to infinity, the result of the calculation will

not be altered.

The periodic solutions that fit in this sector correspond to two anti-parallel lines

(i.e. (1.2) at two values of x2 separated by R), or two concentric circles (i.e. (1.3) with radii

Ri and Rf ). In addition we allow the two lines to couple to different scalars, (i.e. (1.6)

with θ = π/2, m1 = 0 and ϕ1 = ϕ1i on one line and ϕ1 = ϕ1f on the second).

The minimal solution will fit within an S1 ⊂ S5. That ansatz has a2 > 0 which will

select the a2 + p2 > 0 case of the AdS3 ansatz.

4.2.1 Anti-parallel lines

Here we study the example of two infinite anti-parallel straight lines, extended in the x1

direction and located at x2 = ±R/2. In addition to the separation in space, we allow the

lines to be at different points on S5. So the boundary conditions along the first line are

x1 = τ , x2 = −R

2
, ϕ1 = ϕ1i , (4.9)

and along the second line

x1 = τ , x2 =
R

2
, ϕ1 = ϕ1f . (4.10)

This type of Wilson loops was the one studied in the original papers of Rey and Yee

and of Maldacena [19, 20]. Already in [20] the two lines were allowed to be at different

positions on S5. As explained in section 2.1, this corresponds to turning on only the

integration constant π1 in (2.6). All the mi in our general ansatz (2.4) as well as π2 and

π3 are set to zero and we take ρ1 = 1 and ρ2 = ρ3 = 0.

So only the angle ϕ1 will vary along the world-sheet and is given by ϕ1 = ϕ1i+π1σ. The

constant a in the Virasoro constraint is given by a = π1 and the range of the world-sheet

coordinate σ is

δσ =
δϕ1

a
, (4.11)

where the two lines are separated by an angle δϕ1.

In the general ansatz for parallel lines (section 3.3) we use the same constant a and

the range of σ was given by the complete elliptic integral (3.55)

δσ = 2y+K
(

ipy2
+

)

(4.12)

with (3.53)

y2
+ =

−a2 +
√

a4 + 4p2

2p2
. (4.13)
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Equating those two expressions for δσ gives a relation between δϕ1 and p/a2. This

simple scaling is a consequence of conformal invariance, the distance between two parallel

lines can be changed by a conformal transformation. Equation (3.57)

R =
2

y+p

[

E
(

ipy2
+

)

− K
(

ipy2
+

)]

, (4.14)

gives R
√

p as a function of p/a2, and then by the previous relation in terms of δϕ1.

The full action for this solution is given by twice the sum of the kinetic terms on S5,

which vanishes in this case, and the AdS5 part (3.58). The result is

S = −T
√

λ

2π

2

y+

[

E
(

ipy2
+

)

− K
(

ipy2
+

)]

= −T
√

λ

2π
pR . (4.15)

This is a simple way of writing the action, but the right-hand-side is not expressed solely

in terms of the geometric data, R and δϕ1. To fix that one uses the above relations to

replace for p, which will be 1/R2 times some function of δϕ1. Then the right-hand side

will always exhibit a Coulomb-like potential.

If the two lines are at the same value of ϕ1, the solution simplifies. We set a = 0, and

find [19, 20]

R =
2√
p

[E(i) − K(i)] =
(2π)3/2

Γ(1/4)2
√

p
. (4.16)

Using (3.58) we evaluate the action, which after subtracting the divergence is

S = −
√

λ

2π
(R

√
p)2

T

R
= − 4π2

√
λ

Γ(1/4)4
T

R
. (4.17)

It is worth pointing out that even in this simple case, the boundary conditions allow

for another solution: two disconnected surfaces as in equation (4.1) corresponding each to

a single straight line. The action for this solution is zero, and the action for the connected

solution (4.15) is always negative, so in this case the connected solution dominates for any

value of the geometric data, R and δϕ1. In more general cases, different solutions will

dominate in different ranges of the parameters, as we will see in the next example.

4.2.2 Concentric circles

A richer example is that of two concentric circles in a plane in R
4. The new feature that

arises is that for certain values of the radii, the connected classical solution ceases to exist.

This phenomenon was described in this context first by Gross and Ooguri [30]. They used

the intuition from flat space where two circles on parallel planes have a connected minimal

surface between them only if they are separated by a distance smaller than roughly 1.325

times their radius.

This configuration was studied in AdS5 space in [21, 22], where two concentric circles

of equal or unequal radii on two parallel planes where considered. In our ansatz we study

circles in the same plane, but those solutions are not really different. Two concentric circles

on parallel planes define a 2-sphere or a plane in R
4. Since we can relate any 2-sphere to
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the plane by a conformal transformation, those systems are equivalent. We repeat the

calculation here, generalizing it by allowing the two circles to have different values for the

S5 angle ϕ1.

Now the boundary conditions on the string along the first circle are

φ1 = kτ , v = vi , ϕ1 = ϕ1i , (4.18)

and along the second circle

φ1 = kτ , v = vf , ϕ1 = ϕ1f . (4.19)

By conformal invariance, the result ought to depend only on the ratio of the radii, which

according to (3.5) is given by Rf/Ri = exp(vf − vi).

As in the case of the parallel lines, we have to relate the range of the world-sheet

coordinate σ in the two parts of the ansatz. From (2.11) and (3.20) we get the relation

δσ =
δϕ1

a
=

2z+

k
K

(

z+

z−

)

, (4.20)

with (3.18)

z2
± =

k2 − a2 ±
√

(a2 + k2)2 + 4k2p2

2(a2 + p2)
, (4.21)

A second equation comes from the boundary conditions on v. The total shift in v is

given by (3.23)

δv = vf − vi = log
Rf

Ri
=

2pz+

k

[

K

(

z+

z−

)

− Π

(

−z2
+

∣

∣

∣

∣

z+

z−

)

]

. (4.22)

The full action is again twice the sum of the kinetic terms, which vanishes for this S1

ansatz, so it’s just the AdS5 contribution restricted to the AdS3 case (3.25), with T = 2π

S = −
√

λ
2k

z+

[

E

(

z+

z−

)

− K

(

z+

z−

)

]

. (4.23)

One can always construct also a disconnected solution, each of the circles will be

the boundary of the world-sheet described in section 4.1. The action for the disconnected

solution doesn’t depend on the ratio of radii, it’s simply twice the action there, S = −2k
√

λ.

The Gross-Ooguri phase transition [30] will take place when the action of the connected

solution reaches this value. In the case with δϕ1 = 0 this happens at Rf/Ri ∼ 2.4034.

Furthermore, for any fixed value of δϕ1, by plotting δv, one can see that it reaches a

maximum, which implies that we have connected surfaces only for a finite range of the ratio

of radii. Beyond that, only the disconnected solution exists. For δϕ1 = 0, this happens for

K(z+/z−) = 2E(z+/z−)/(1 − z2
+/z2

−) or roughly p/k ∼ 0.5811. This value corresponds to

a ratio Rf/Ri ∼ 2.7245, and was already obtained by Zarembo and Olesen [21, 22], who

considered the correlator of two circles in parallel planes separated by a distance L. Their

configuration and ours are conformally related by a stereographic projection.
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Figure 2: The allowed range of Rf/Ri for two circles of radii Rf ≥ Ri as a function of the

separation on the sphere, δϕ1. Connected classical solutions exist for all values inside the region

bound by the dashed line. This connected solution dominates only inside the region bound by the

solid line.

We illustrate this in figure 2. A connected solution exists only inside the dashed curve.

Inside the solid curve this connected solution has lower action than the disconnected one

and will dominate. The closer the initial and final values of R are, the range of δϕ1

with a connected solution will increase. This graph is symmetric under the inversion

Rf/Ri → Ri/Rf .

4.3 AdS2 × S2 subspace

We consider now the case where on the boundary of AdS5 the source is localized along

a line or a circle and on the S5 part the ansatz will involve periodic motion inside a 2-

sphere. This ansatz includes single lines, or circles with some rotation on S2, and may

also include the correlator of two lines/circles, as long as they are separated only in the S5

directions. This sector obviously includes the line and circle with no rotation reviewed in

section 4.1. Another case already studied in section 4.2 is that of two coincident lines or

circles separated on the sphere by a constant angle δϕ1.

4.3.1 Single line

We first review the case of a single straight line, already presented in [24]. The Wilson loop

will be the line (1.2) with periodic coupling to three of the scalars, (1.6) with cos ψ = 0 and

only m1 = m non-zero. The minimal surface will be given by the S2 solution discussed in

section 2.2 in the special case of a = 0, and the simplest AdS2 ansatz. The solution is

x1 = τ , y = σ , ϕ1 = mτ , sin θ =
1

cosh m(±σ + σi)
. (4.24)

The world-sheet extends from σ = 0 to infinity and σi is set by the boundary value of θ as

sin θi = 1/ cosh mσi. The choice of sign corresponds to the surface covering the northern

or southern hemisphere, one of which will be a minimum and the other an unstable saddle

point (unless θi = π/2).

– 27 –



J
H
E
P
0
1
(
2
0
0
6
)
0
5
6

The AdS5 part of the solution is identical to the usual straight line (4.1), whose action

vanishes (after including the boundary term). The action therefore comes from the S5

part, and is equal to the area of the part of the sphere covered by the surface a certain

number of times (2.14)

S =

√
λ

2π
Tm (1 − | cos θi|) , (4.25)

where T is a regulator of the length of the line.

4.3.2 Single circle

Next we consider the expectation value of a Wilson loop which is wrapped k times around

a circle (1.6) while wrapping m times a parallel at angle θi on S2.

Again the constant a vanishes so the solution of the sphere σ-model is like in the above

example, while for the AdS5 part we use (3.41) giving

φ1 = kτ , z = sinh kσ , ϕ1 = mτ , sin θ =
1

cosh m(±σ + σi)
, (4.26)

Again the sign corresponds to a surface extending over the northern or southern hemisphere

and is chosen to minimize the action, and at σ = 0 the boundary value of sin θ is set to

1/ cosh mσi. We also write the solution in terms of the coordinates on the Poincaré patch

ŷ = R tanh kσ , r̂1 =
R

cosh kσ
. (4.27)

Note that ŷ2 + r̂2
1 = R2.

The contribution to the action from the AdS5 part (3.43) is k times that of the regular

circle, or SAdS5
= −k

√
λ. From the S5 part we get the area of the part of the sphere

covered by the surface SS5 = m
√

λ(1 − | cos θi|). Together the action is

S = (−k + m − m| cos θi|)
√

λ . (4.28)

Thus the expectation value of the Wilson loop at strong coupling is given by

〈W 〉 ∼ exp
[

(k − m + m| cos θi|)
√

λ
]

. (4.29)

Note here that in the special case when m = k this reduces to

〈W 〉 ∼ exp
[

k cos θi

√
λ
]

, (4.30)

which will be studied in detail in [31].

In the specific case when θi = π/2, this Wilson loop preserves 1/4 of the supersym-

metries of the theory, fitting a general ansatz for supersymmetric Wilson loops found by

Zarembo [23]. The action for the string solution in this case vanishes, giving the Wilson

loop expectation value unity. It was subsequently proven that this Wilson loop is equal to

one to all orders in perturbation theory [32, 33].

If θi = 0 the surface will stay at the north pole, so the S5 ansatz is trivial, this is just

the AdS2 solution discussed in section 4.1.
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4.3.3 Coincident circles

The most complicated example in this sector is that of two coincident circular loops. The

two circles may be oriented in the same way, or in opposite directions, and as above we

allow a periodic coupling to the scalars.

The case of oppositely oriented circles is rather subtle. If we considered coincident

lines the potential between them would diverge. One way to see that is to consider the

solution with the lines separated, where they will exhibit a Coulomb potential, which will

diverge when they coincide. The surface describing them will get closer and closer to the

boundary and in the limit it becomes singular.

Another way of seeing this is to take the solution for coincident lines (3.59) with a2 > 0.

The range of σ is then π/a and has to be equal to that on the sphere, which for the S2

ansatz (2.16) is

δσ =
π

a
=

1

a

∣

∣

∣

∣

F

(

θf

∣

∣

∣

∣

i
m

a

)

− F

(

θi

∣

∣

∣

∣

i
m

a

)
∣

∣

∣

∣

. (4.31)

The right-hand satisfies the following inequalities

∣

∣

∣

∣

F

(

θf

∣

∣

∣

∣

i
m

a

)

− F

(

θi

∣

∣

∣

∣

i
m

a

)∣

∣

∣

∣

≤ 2K
(

i
m

a

)

≤ π , (4.32)

where θi and θf are the boundary values of θ on the two circles. Hence the equation for δσ

can only be satisfied for θi = 0 and θf = π, where this solution is not the dominant one.

The same is true if we take the S1 ansatz (2.11), where the range of σ is δσ = δϕ1/a,

and again there will be no solution for δϕ1 < π. The absence of a regular solution in

those examples is an indication of a divergence, at a finite separation there would be a

solution but it becomes singular, and the action diverges, as the lines are brought to-

gether.

The same should generically be true for coincident circles. This explains why for most

of the range of parameters we will not find solutions with finite action. For certain values

there are solutions with finite action for this case, but one has to take them with a grain

of salt, we do not know if there is another singular contribution. That will require looking

at the limit of nearly coincident circles mentioned above.

When the circles are oriented in the same direction there is no such danger, the minimal

surface has to cover twice the AdS2 subspace (for oppositely oriented circles it will cover

twice a ring near the boundary of AdS2). Still we will find nontrivial solutions only for a

small range of parameters. The reason is not fully clear to us, but a possible explanation

is the following intuition from flat space.

Consider two circles of the same orientation in flat space. Generally there will be only

the disconnected solution, two discs. But if the circles are in the same plane and overlapping

there is also a connected solution. It will cover the same area as the disconnected one, but

the two sheets will connect there to make a single surface. To avoid confusion, the surface

that looks like an annulus and doesn’t cover the smaller circle is not allowed because of

the orientation.
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From this example we see that in generic situations there will not be connected so-

lutions for loops of the same orientation. In the case of two concentric circles considered

in section 4.2, there is no such solution. On the other hand, if the two surfaces of the

disconnected solution touch, it’s possible to change the topology of the surface there into

a connected solution.

This indeed happens in this example. If we consider the disconnected solution and

arrange for both parts to wrap the same hemisphere in S2, at the north pole the surface

will be at the same position in AdS5 (at r1 = 0). So such a connected solution will exist,

and will have the same action as the disconnected solution, and if the two circles are on

the same hemisphere this is the dominant solution. This solution has a2 = 0, exactly like

the disconnected one, but we may try to look for other connected solutions. We did indeed

find some such solutions for a certain range of parameters.

Since the coordinate z will not be bound we have to look at the AdS2 solution (3.44)

with a2 < 0, and the S2 solution (2.18). We looked in detail at the case when θi = θf ,

where the equation for the range of σ is

δσ =
2

b
K

(
√

1 − k2

b2

)

=
2

b
F

(

arccos
cos θi

cos θm

∣

∣

∣

∣

i cot θm

)

, (4.33)

with b2 = −a2 and sin θm = b/m.

For m > k there are no solutions to this equation. To see that, note that the right-

hand side is not greater than the complete elliptic integral 2K(
√

1 − m2/b2)/b, which for

m > k is smaller than the left-hand side. But for all m < k we did find solutions, and the

connected solution always has smaller action than the disconnected one.

Let us turn now to the case of circles with opposite orientation, where the minimal

surface will not cover the full AdS2 subspace, but stay near the boundary. That means the

coordinate z will have a maximum, which is the case of positive a2. The solution to the

AdS5 part of the ansatz is given by (3.38) and to the S5 ansatz is given by (2.15).

The range of the world-sheet coordinate σ will be given by (3.39). This has to equal

the range calculated on the S2 side (2.16), giving the relation

δσ =
2

a
K

(

i
k

a

)

=
1

a

∣

∣

∣

∣

F

(

θf

∣

∣

∣

∣

i
m

a

)

− F

(

θi

∣

∣

∣

∣

i
m

a

)
∣

∣

∣

∣

. (4.34)

Let us assume without loss of generality that θi < θf and also that θi < π/2. In the

special case that m = 0 there is no dependence on ϕ1, so the S5 ansatz reduces to an S1

and the right hand side becomes (θf − θi)/a. This is a limiting case of the system studied

in section 4.2 when the two circles are coincident, i.e. δv = 0. This limit is singular and

the action diverges.

In general, since θf ≤ π and θi ≥ 0, the right hand side of equation (4.34) will be smaller

than twice the complete elliptic integral 2/aK(im/a). The complete elliptic integral with

imaginary modulus is a a monotonously decreasing function from K(0) = π/2, approaching

zero at infinite imaginary modulus. Therefore if m > k the right hand side is smaller than

the left hand side for all values of a. Thus there will be no regular connected classical

solution.
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Figure 3: Phase diagram for two coincident circles with rotation on S2 at angles θi + θf = π.

Regular connected solutions exist only to the left of the dashed line, when θf − θi is not too small,

and m/k not too large. The disconnected solution has smaller action in the entire range except for

the small region above the solid line.

Hence we should study the existence of solutions for m < k. Let us focus on the case

where θf = π − θi, then we use the fact that the elliptic integral with argument θi and

π − θi add up to twice the complete elliptic integral to rewrite (4.34) as

F

(

θi

∣

∣

∣

∣

i
m

a

)

= K
(

i
m

a

)

− K

(

i
k

a

)

. (4.35)

For certain values of θi there will be solutions to the equation, and for others not. The

solutions will exist for θi smaller than a critical value, and will not exist if θi exceeds it.

We interpret that to mean that when θi and θf are too close to each other the phenomenon

described above happens—the potential between the two circles will diverge.

In all those case there is also a disconnected solution, just two of the surfaces described

in the preceding subsection. It turns out that in most of the range where the connected

solution exists, the disconnected one has lower action and will dominate. The results of

our numerical studies are shown in figure 3. Connected solutions exist to the left of the

dashed curve, and they dominate the action only in the small region bound by that curve

and the solid line.

4.4 AdS3 × S3 subspace

4.4.1 Anti-parallel lines with rotation

We wish to consider here two anti-parallel Wilson loops extended in the x1 direction,

separated by a distance R in the x2 direction (1.2). Along each of the lines we include in

the Wilson loops a coupling to the scalars which is periodic around a circle, that is (1.6)

with ψ = π/2 and only m = m1 6= 0. So the first line will set the initial conditions

x1 = τ , x2 = −R

2
, θ = θi , ϕ1 = miτ , ϕ2 = ϕ2i . (4.36)

Along the second line will set the final values

x1 = τ , x2 =
R

2
, θ = θf , ϕ1 = mf τ , ϕ2 = ϕ2f . (4.37)
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Figure 4: The values of θ as a function of the spatial coordinate x2 for boundary values θi = 5π/12

and θf = 2π/3 (the dotted horizontal lines) and different separation. At very large separation

(mR = 3, 4) there are connected solutions (dashed) but the disconnected solution (solid) dominates.

As shorter separation (mR = 1.5, 2, 2.5) the connected solutions dominate and have a turning point

θm > θf . At shorter distances the solution does not have a turning point.

The S3 ansatz in section 2.3 allows the two lines to be at different values of ϕ2, as indicated

above. In the examples we consider below, though, we will take this angle to be a constant,

to simplify the expressions, which will then fit the S2 ansatz in section 2.2.

In the above ansatz we allowed the two lines to rotate with different parameters m.

If mf = mi the two lines rotate together, while for mf = −mi, they are rotating in

opposite directions. In the former case the angle θ will not have to go through zero. In the

latter, since the two rotations have opposite orientation, θ will have to go through zero.

In fact, we can consider this case on the same footing as the other by the replacement

mf → −mf and θf → −θf . So negative θ correspond to rotation with the opposite

orientation.

Another case we may consider is for mf = 0, which is realized by θf = 0.

Some of those loops were already studied by Tseytlin and Zarembo [24]. We generalize

their solutions and study them further.

As usual, we will have to equate the range of the world-sheet coordinate σ, which for

the S3 ansatz can be found from the expressions in section 2.3. Since we restrict ourselves

to the S2 case we have (2.16) for a2 > 0 and (2.19) for a2 < 0. From the AdS5 part of the

ansatz δσ is given by (3.55).

Let us first study the case where mf = mi (and label it m). The initial and final values

θi and θf are both positive. We found four different types of solutions for these boundary

conditions that will be realized for different values of the parameters. We illustrate some

of them in figure 4 for θi = 5π/12 and θf = 2π/3.

One solution, which exists for all values of the parameters is the disconnected one. It

is simply two of the lines considered in section 4.3.1, with action

S =
T
√

λ

2π
m(2 − | cos θi| − | cos θf |) . (4.38)
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There are also connected solutions for all values of the parameters, but their nature

depends on the separation between the lines. When the two lines are very far apart the

connected solution will be described by the solution with negative a2 (2.18) with a turning

point θm. It will start at θi, go to θm, near 0 or π and then back to θf . For some values

there would be only one such solution, and in other cases two or even more (see figure 4).

If the distance between the lines is large enough it’s also possible to construct classical

solutions that oscillate a few times. They will go to some θm, then to π − θm, and back.

Those solutions will never dominate the action.

As the lines get closer, θm will approach θi or θf , and beyond that this branch of the

solution will cease to exist. Instead there will be a new solution which still has negative a2,

but will not have a turning point. Those solutions can still be described by some value of

θm, but it will not be along the world-sheet. As the lines get closer this θm will get again

closer to 0 or π.

Finally, when θm reaches the north or south pole we have to look at solutions with

a = 0, which are quite easy to study. In this special case the solution to the AdS5 part is

identical to that of the parallel lines with no motion on S5, studied in [19, 20] and reviewed

in section 4.2. The separation between the lines is given by (4.16) as a function of p. The

value of p can be found by solving the equation for the range of σ, which using (2.13) is

δσ =
2√
p

K(i) =
Γ(1/4)2

2
√

2π

1√
p

=
1

m

[

arccosh
1

sin θi
+ arccosh

1

sin θf

]

. (4.39)

At even closer separation a2 will be positive and the solution will be described by (2.15).

This suggests a phase diagram with four phases, one where the disconnected solution

dominates, and three with connected solutions: Negative a2 and a turning point, negative

a2 without a turning point and positive a2. We now turn to study those phases in some

specific examples.

Let’s start considering the particular case θi = θf . In this simple case we find that

almost always a2 < 0, and there is a turning point at sin θm = b/m with b2 = −a2. In that

case we find the relation (2.19), (3.55)

δσ = 2y+K
(

ipy2
+

)

=
2

b
F

(

arccos
cos θi

cos θm

∣

∣

∣

∣

i cot θm

)

. (4.40)

with (3.53)

y2
+ =

b2 +
√

b4 + 4p2

2p2
. (4.41)

For θi < π/2 we can always find a solution to these equations. The further the two lines

are from each other the smaller sin θm would be, and as they get closer θm approaches the

initial value θi. In the special case of θi = π/2, were the initial and final positions are along

the equator of S2 the solution ceases to exist for mR . 2.312. At shorter distances we have

to use the other solution discussed at the end of section 2.2, where θm = π/2. Without

the AdS5 contribution this solution would be unstable, but here it is in fact realized. The

transition between those two solutions was explained in [24], which studied exactly this

system with θi = θf = π/2.
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Figure 5: θm, the minimal value of θ for two lines separated a distance R with wrapping m times

around the sphere. The initial and final values of θ (which are equal in this case) can be read from

the intersect of the lines with the axis at R = 0, since then θm = θi. The bend in the curve gets

sharper the larger sin θi is, and for θi = π/2 it is not differentiable.

We illustrate this behavior in figure 5, where we plot the value of the turning point θm

as a function of the distance between the lines (multiplied by the rotation parameter m, to

make it scale invariant) for different values of θi. As mR → 0 the turning point approaches

θi, and it gets closer to the pole as mR is increased. In the special case of θi = π/2 the

curve is non-differentiable, due to the phase transition between the two solutions. For all

other values of θi the curve is smooth, but the bend gets sharper as we approach θi = π/2.

The action for this solution is given by the sum of the S2 contribution (2.20) and that

of AdS5 (3.58). It is always smaller than that of the disconnected solution.

Another example where the expressions are simple, but the phase structure much richer

is for θf = π− θi. At very large separation the disconnected solution will always dominate,

the two pieces will cover parts of the two hemispheres, and will not cross θ = π/2 as the

connected solution has to. The action is (2.14)

S =
T
√

λ

2π
2m(1 − | cos θi|) . (4.42)

This solution will coexist with the connected solutions and dominate at large distances.

There will be a first order phase transition when the connected solutions start dominating.

Figure 6 shows the different phases for those boundary values, the disconnected solutions

dominate everywhere to the right of the solid line.

For large separation R the connected solution that is realized is the one with a turning

point at sin θm = b/m. Since θi and θf are complementary the sum of the two elliptic

integrals in (2.19) is the complete integral. Combining with (3.55) we get the relation

δσ = 2y+ K
(

ipy2
+

)

=
2

b
K (i cot θm) , (4.43)

where y+ is like in the previous example. Note that this equation is independent of the

value of θi, and is identical to the equation in the last example (4.40) for the case of

θi = θf = π/2.
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Figure 6: The phase diagram for two lines wrapping the sphere at angles θi + θf = π. For all

values of θi and R there are at least two solutions, including one disconnected and one connected.

The disconnected solution has lower action to the right of the solid curve, and the connected ones

to the left. The connected solution has positive a2 to the left of the dotted curve (given by (4.45))

Between the dotted and dashed curve the solution has negative a2, but no turning point. And to

the right of the dashed line the solution has a turning point. The solid line and dotted one seem to

represent first order phase transitions, and the dashed one a second order one.

This equation can always be solved, but the solution may have sin θm = b/m > sin θi,

which is unphysical. The value of θm as a function of mR is the uppermost curve in figure 5.

In the present case this phase ceases to exist for θi = θm. Therefore this same curve serves

now as the phase boundary and is illustrated by the dashed line in figure 6.

Beyond that point the connected solution will still have negative a2, but there will not

be a turning point. It will be described by the (2.18) with only the positive branch and

the negative signs in (2.19) and (2.20). The range of σ is

δσ = 2y+ K
(

ipy2
+

)

=
2

b

[

K (i cot θm) − F

(

arccos
cos θi

cos θm

∣

∣

∣

∣

i cot θm

)]

. (4.44)

The action for this solution is given by the usual expressions. It is interesting to look at

it close to the transition to the phase discussed before. From the numerical data it seems

like the phase transition is of second order.

As the separation R is decreased we find that b → 0, which happens at a value of p

given by (4.39). Combining that with (4.16) we find the relation between R and θi to be

cosh

(

Γ(1/4)4

16π2
mR

)

=
1

sin θi
. (4.45)

This relation is shown by the dotted line in figure 6.

At shorter separations the connected solution will have positive a2. Numerical analysis

suggests the phase transition between negative and positive a2 is of first order.

Note that for the special case of θi = 0 and θf = π the string starts at the north

pole and ends at the south pole. In this case m plays no role at the boundary. In fact

this configuration has the same boundary conditions as for two lines in the AdS3 × S1

ansatz separated by an angle δϕ = π. In section 4.2 we saw that in this case there was
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Figure 7: The phase diagram for two lines with rotations in opposite directions at angles θf = θi−π.

For all values of the separation R there are connected solutions with a2 > 0, but to the right of the

curve the disconnected solution dominates.

no connected solution. Allowing for the S2 ansatz here, we do find a connected solution,

but its action is greater than the disconnected one for all separations (the bottom of

figure 6).

Let us now leave this case and look briefly at some examples with mf = −mi. It is

simpler, as explained above, to describe them by allowing negative θ, so we take positive

θi and negative θf and replace mf = mi = m.

In this case there seem to be only two phases, the connected solution with a2 > 0 and

a disconnected one. The disconnected one will not be dominant unless θi and θf are on

different hemispheres.

Thus an interesting case is the one with θf = θi − π (or alternatively θf = π − θi and

mf = −mi). The connected solution has a2 > 0, and again the sum of the two elliptic

integrals is the complete integral

δσ = 2y+K
(

ipy2
+

)

=
2

a
K

(

i
m

a

)

. (4.46)

At short distances this connected solution will dominate, but at large distances the

action of the disconnected solution, given in (4.42) will be lower. The line separating those

two phases is shown in figure 7.

Finally let us comment on the case where mf = 0. That is easy to incorporate into

this ansatz by taking θf = 0 (or θf = π). In this case we find a classical solution with

a2 > 0 for all values of m and θi, and it always has smaller action than the disconnected

solution.

4.4.2 Concentric circles with rotation

Another periodic ansatz that fits inside the AdS3 subspace of AdS5 is the case of two

concentric circles. We now consider this example where the Wilson loop also couples to

the scalars in a periodic fashion. The boundary conditions on the first circle are

v = vi = log Ri , φ1 = kτ , θ = θi , ϕ1 = miτ , ϕ2 = ϕ2i . (4.47)
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Figure 8: Phase diagram for concentric circles with radii Rf > Ri which rotate k times in R
4 and

m times on the sphere with θi = θf = π/2. The disconnected solution as well as the solution with

constant θ exist for all values of the parameters, and in addition there are solutions with a turning

point to the left of the dashed line. The solid curve is the phase boundary between that dominated

by the disconnected solution (to the right), the connected solution with constant θ (to the left) and

the solution with a turning point (above the triple point).

For the second circle we have

v = vi = log Ri , φ1 = kτ , θ = θf , ϕ1 = mfτ , ϕ2 = ϕ2f . (4.48)

We will not study this general ansatz in detail, there are many parameters to vary and

presumably many different phases. We will look only at the case with θi = θf = π/2,

mf = mi = m and ϕ2f = ϕ2i.

For these values of θi and θf there are two possible solutions to the S2 ansatz, that

with −m2 < a2 < 0 (2.18) and the one with a2 = −m2 mentioned at the end of section 2.2

(and was realized also in the last subsection).

For the case when a2 < 0, the equations for the range of σ are (2.19), (3.20)

δσ =
2z+

k
K

(

z+

z−

)

=
2

b
K (i cot θm) . (4.49)

with b2 = −a2 and (3.18)

z2
± =

b2 + k2 ±
√

(b2 − k2)2 + 4k2p2

2(p2 − b2)
, (4.50)

The results of the numerical studies are shown in figure 8. This figure is for Rf > Ri,

and can be extended by the replacement Rf ↔ Ri. For all values of m, k, Rf and

Ri both the disconnected solution and the connected one with constant θ = π/2 exist.

The disconnected one dominates for large values of the ratio Rf/Ri, to the right of the

solid curve. What is not obvious from the picture is that Rf/Ri has a maximum of

roughly 6.9914 at small m/k and beyond that the curve goes to Rf/Ri = 1 at m/k =

0.
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The solution with negative a2 exists to the left of the dashed line and dominates the

action above the triple point (note that while the dashed line gets very close to the solid

one, they do not touch). For very large m/k the leftmost solid line approaches 1, so the

unstable solution does not dominate there. The other two lines approach the values 2.4034

and 2.7245, which are the same as the intercept of the lines with the horizontal axis in

figure 2. That was the case of two concentric circles with no motion on the S5 (also studied

by [21, 22]).

5. Discussion

The purpose of this article is twofold; to point out that the integrability of the σ-model

on AdS5 ×S5 can be used to calculate Wilson loops within the AdS/CFT correspondence,

and to demonstrate this in some specific examples.

It is very easy to integrate the equations of motion, as we did in sections 2 and 3. The

results are given by trigonometric and hyperbolic functions as well as elliptic integrals,

and more complicated cases would be expressed in terms of hyperelliptic integrals. On

the other hand, combining the solutions into full-fledged examples leads to very complex

phenomena. There are many solutions to the equations of motion for the same boundary

conditions and it requires careful study to find which will dominate.

Some of the solutions exist only for a certain range of parameters, like the catenoid

discussed in [30, 21, 22]. Other solutions may coexist for the entire range of parameters

(like the connected and disconnected solutions for anti-parallel lines with rotation), with

one dominating in a certain regime, and the other in another.

Thus the equations of motion are easy to solve, but fixing the boundary conditions leads

to the complicated phase structure. This, in fact, is not unlike the classical problem of soap

films in flat space (“Plateau’s problem”). The difficulty is not with solving the equations

of motion locally, but with satisfying the boundary conditions. These complications raise

some questions we would like to discuss now.

Some recent studied of local operators in N = 4 supersymmetric Yang-Mills seem to

indicate that in the planar limit the theory is integrable. The integrable structure was

found both on the field theory side at weak coupling and in AdS5 × S5, corresponding to

large ’t Hooft coupling. In fact, integrability in this limit is based exactly on the same

integrals of motion considered here for the Wilson loop operators.

If the full planar theory is to be integrable, it should include also the Wilson loop

operators. As stated, the equations of motion are integrable, which agrees with those

expectations, but the existence of multiple solutions complicates matters and is a question

that will have to be addressed in making the claim that the planar theory is integrable.

Many confusing issues arise when trying to compare what is known about the inte-

grability of local operators to Wilson loops. Are the basic objects the one-point functions

of those operators, or the correlators of two? What is the meaning of the different phase

transitions, where the correlator of two loops changes markedly as the boundary conditions

are modified.
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To gain further intuition into those problems it is useful to find some simple operators

that can be used as starting points in this investigation. Here we tried to classify the loops

according to subspaces they reside within. Clearly the simplest is the circle or line, which

live inside an AdS2 subspace of AdS5 × S5. The next level of complication comes from

extending it either to AdS3 × S1 or to AdS2 × S2. Beyond that we considered the case of

AdS3 × S3.

This classification has some resemblance to the subsectors of local operators related

to different spin-chains. The Wilson loops whose minimal surface fit within the AdS3 ×S1

include two components of the gauge field and two real scalars. That is reminiscent of the

spin-chain with one complex scalar and a chiral combination of covariant derivatives. The

operators described within AdS2 × S2 have a single gauge field and three scalars, which

can also be combined into a complex scalar and a chiral operator made of a covariant

derivative and scalar. Finally the AdS3 × S3 subspace is related to operators with two

covariant derivatives and four real scalars, which again has some similarity to the sector of

local operators made of two complex scalars and a chiral covariant derivative.

In this paper we studied Wilson loops only in AdS5 × S5, and did not touch at all on

the gauge theory side of the duality. While the periodic ansatze led to simple equations

for the string surface which we solved, the perturbative calculation seems quite compli-

cated. We did not find analogous signs of integrable structure in the weakly coupled field

theory.

There are also some conceptual problems that have to be addressed in this comparison.

In AdS5 × S5 one can consider operators that are localized at the same point on the

boundary of AdS5 but separated only in the S5 direction. For example, in the example

of the single circle in section 4.3.2 we considered the circle wrapping the curve in space k

times while wrapping a circle in S5 m times. There is a nice minimal surfaces with finite

action for all integers values of k and m. If one looks at the same Wilson loop operator in

the gauge theory, there will be singular graphs that connect different points along the loop

that are coincident in space. Those graphs will lead to divergences unless m is divisible

by k.

A more extreme example of this is for coincident circles (see section 4.3.3), where for

certain values of the parameters we found finite action solutions. Calculating those Wilson

loops in perturbation theory involves extremely divergent graphs.

This issue has some similarities to the question of zig-zag symmetry. We know that a

Wilson loop does not change under arbitrary reparametrizations, including backtracking.

But looking at the part of the loop that backtracks naively in perturbation theory gives

a very bad divergence. The coincident circles resemble a backtracking curve, only with

different couplings to the scalars, and to capture them requires some regularization that

satisfies this general form of zig-zag symmetry allowing for extra motion on S5.

Another difference between the string theory calculation and that on the gauge theory

side is that in the gauge theory at weak coupling there is no sign of those complicated

phases we find for the minimal surfaces. This is a phenomenon that must show up only

at the level of classical string theory, but the phase transitions should be smoothed out

by quantum corrections to the σ-model, and are hard to see from the gauge theory side.
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There actually is an example of a class of operators where by summing the perturbative

result and expressing the results in a 1/
√

λ expansion, one finds two saddle points that

agree with two solutions found in string theory [31].
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